HYPERTENSION MANAGEMENT

Hypertension Clinic

• determine cause of high blood pressure in order to target, optimize, and validate medications

• facilitate early decision making in drug development and clinical trials

Electrophysiology

• measure ventricular repolarization using ECG or ICG to help predict the risk of arrhythmia

• optimize AV-delay and VV-delay in multi-chamber pacemakers

PHARMACEUTICAL CLINICAL TRIALS

• facilitate early decision making in drug development and clinical trials

PHYSICIAN’S OFFICE

• measure aortic pulse wave velocity to evaluate arterial stiffness for cardiovascular risk stratification

• determine cause of high blood pressure in order to target, optimize, and validate medications

• establish baseline hemodynamics for the treatment of resistant hypertensives

• determine cause of high blood pressure in order to target, optimize, and validate medications

• facilitate early decision making in drug development and clinical trials

PACEMAKER ADJUSTMENT

• monitor heart rate and contractility in response to interventions

• optimize AV-delay and VV-delay in multi-chamber pacemakers

TECHNICAL DATA

NICO® CARDSCREEN 2000®

- Measurement Principles: Impedance Cardiography (ICG)
- Measurement Channels: Standard ECG, Confidial, ICG
- Impedance Cardiography (ICG):
 - Measuring range: 100-240 VA; 18-50 Hz
 - Accuracy: ±1 MHz, ±0.2 Ohm
- ECG:
 - Measuring range: 40-260 mmHg
 - Accuracy: ±5 mmHg
- Pulse Wave (PW):
 - Measuring range: 1.5-40 kHz
 - Accuracy: ±1 kHz
- NIBP:
 - Measuring range: 40-260 mmHg
 - Accuracy: ±5 mmHg
- SpO2:
 - Measuring range: 1-100%
 - Accuracy: ±2%
- Power Supply:
 - Voltage: 100-240 VAC
- Battery: NiMH, capacity > 60 min
- Dimensions:
 - W x H x D: 210 x 420 x 140 mm
 - Weight: 3 kg
- Interfaces:
 - USB port
- Operating system: MS Windows

CARDSCREEN 1000®

- Measurement Principles: Impedance Cardiography (ICG)
- Measurement Channels: Standard ECG, Confidial, ICG
- Impedance Cardiography (ICG):
 - Measuring range: 100-240 VA; 18-50 Hz
 - Accuracy: ±1 MHz, ±0.2 Ohm
- ECG:
 - Measuring range: 40-260 mmHg
 - Accuracy: ±5 mmHg
- Pulse Wave (PW):
 - Measuring range: 1.5-40 kHz
 - Accuracy: ±1 kHz
- NIBP:
 - Measuring range: 40-260 mmHg
 - Accuracy: ±5 mmHg
- SpO2:
 - Measuring range: 1-100%
 - Accuracy: ±2%
- Power Supply:
 - Voltage: 100-240 VAC
- Battery: NiMH, capacity > 60 min
- Dimensions:
 - W x H x D: 210 x 420 x 140 mm
 - Weight: 3 kg
- Interfaces:
 - USB port
- Operating system: MS Windows

medis · Medizinische Messtechnik GmbH

Werner-von-Siemens-Str. 8 · 98693 Ilmenau · Germany

info@medis-de.com · www.medis-de.com
Hypertension management

Physician’s Office
- measure aortic pulse wave velocity to evaluate arterial stiffness for cardiovascular risk stratification
- diagnosis of pre-eclampsia
- measure aortic pulse wave velocity to evaluate arterial stiffness as an independent predictor of cardiovascular risk
- balance systemic vascular resistance, cardiac output and fluid level (TFC)

Invasive hemodynamics provide effective guidance in drug selection and titration for resistant hypertensives. *3

Non-invasive hemodynamic measurement offered by remote monitoring units can be compared to management by experienced hypertension clinicians. Our results suggest that sequential non-invasive measurement provides effective guidance in drug selection and titration in treatment of resistant hypertension. *4

Cardiovascular diagnosis

Rehabilitation
- evaluate heart performance by different function tests (orthostatic test, Valsalva manoeuvre)

Resynchronisation therapy (CRT)
- optimise AV-delay and VV-delay in multi-chamber pacemakers

Pacemaker adjustment

Electrophysiology
- optimise AV and VV delay in dual chamber pacemakers

Optimised for diagnosis and monitoring

Pharmaceutical clinical trials

Phase 1–3 Studies
- facilitate early decision making in drug development and clinical trials.
IMPEDANCE CARDIOGRAPHY (ICG)

Changes in volume and velocity of blood in the aorta cause variations in the thoracic bio-impedance which is measured and displayed on the ICG waveform. Known volume and velocity parameters non-invasively and continuously. The accuracy of the method is further improved by the arterial compliance modulation technology (ACM), for which a special ear clip has to be placed.

AORTIC PULSE WAVE VELOCITY (PWV) [a]

The opening of the aortic valve, when the blood is pumped into the aorta, is defined as the zero-point in the ICG signal. On the other leg, a pressure cuff is placed to measure the amount of the Pulse Wave (PW) and to define its propagation time (PT). Setting up the distance between aorta valve opening and pressure cuff measurement is calculated and allows to evaluate arterial stiffness for cardiovascular risk stratification.

METHODS

ICG and ECG waveforms are evaluated for haemodynamic indication.

- Therapeutic graph
- Event markers
- Selectable time scaling
- 4 selectable parameters

TRENDS

- 3 selectable waveforms
- Evaluate and manage the fluid therapy
- 6 selectable parameters

Fluid Management

- Display of user selectable waveforms and parameters
- Different screens for optimal data presentation (e.g. clinical settings, Interfacing to patient monitors, such as Philips/HP)
- USB port for data import, software update and electronic printer connection
- MAC/PC software for offline data analysis and data export (e.g. Excel)
- Additional modules: NiBP, SpO₂, PWV (Aortic Pulse Wave Velocity)
- ECG and ICG waveforms
- External computer: Panel PC with touch screen, PC or Notebook

New Standards

- Power supply via USB port
- Configurable measuring channels and user selectable parameters and screens.
- Flexible combination with VasoScreen devices for vascular diagnosis
- EASY TO USE
- Highly sensitive measuring technology and intuitive operation by touch screen
- USB interface for easy data backup and software updates
- INNOVATIVE
- Brings ICG technology to your laptop
- The ideal complement to standard vital signs monitors
- CardioScreen 2000®
- CardioScreen 1000®

HDU
- 69 mmHg
- HR 69 / min
- SI 42.2
- TAC, 90% / ICG: 89%
- MAP 150 / 100
- SVI 42.2
- TFC 100%
- TRENDS, with each heart beat
- Display and adjustable waveform parameters
- Different screens for optimal data presentation
- Interface to patient monitors, such as Philips/HP
- Combination of hemodynamic parameters (ICG) and vascular stiffness (PWVao)
- Passive Leg Raising
- Undocking of chest fluid status
- Vasoconstriction/vasodilatation
- INNOVATIVE
- NEW STANDARDS
- EASY TO USE

Produced by NICCOMO®

Non-Invasive Continuous Cardiac Output Monitor

Non-Invasive Continous Cardiac Output Monitor

www.niccomo.de

www.cardioscreen.de

www.cardioscreen.de

The ideal complement to standard vital signs monitors

CardioScreen 2000®

CardioScreen 1000®

www.cardioscreen.de

www.niccomo.de

The optimal configuration for cardiovascular diagnosis

CardioScreen 2000®

CardioScreen 1000®
IMPUTED CARDIOGRAPHY (ICG)

Evaluate arterial stiffness for cardiovascular risk stratification. Aortic pulse wave velocity (PWV) can be calculated to determine arterial stiffness.

EVALUATE AORTIC PULSE WAVE VELOCITY (PWV)

The opening of the aortic valve, when the blood is pumped into the aorta, is indicated by markers: aortic valve opens (B), peak systolic flow (C) and aortic valve closes (X).

Signal quality indicator for validation of ICG waveforms and arterial compliance modulation technology (ACM) parameters non-invasively and continuously. The accuracy of the method is further improved by the arterial compliance modulation technology (ACM) for which a special cuff has to be placed.

PARAMETERS

- **FLOW**
 - RR Interval
 - systolic Pressure
 - diastolic Volume
 - CO Index
 - Pulse Wave Velocity
 - cardiac Output
- **CONTRAST/CURITY**
 - ABI Velocity Index
 - ACI Ancestral Compliance Index
 - PT Pre-Ejection Period
 - PTT Propagation Time
 - TFC Index
- **FLUID**
 - TFC Index
 - TCI Index
 - TFE Index
 - LCWI Work Index
- **VASCULAR**
 - PWV Pulse Wave Velocity
 - SVRI Systemic Vascular Resistance
 - SVR Systemic Vascular Resistance
 - HR Heart Rate
 - MAP Mean Arterial Pressure
- **TRENDS**
 - Pre-Ejection Period
 - Compliance
 - Stroke Work
 - Cardiac Index
 - SV Stroke Volume

SCREENS

- **MONITORING**
 - Waveform differentiation
 - Blood pressure
 - Pulse rate
 - Respiratory rate
- **FLUID MANAGEMENT**
 - Fluid balance
 - Sodium levels
 - Potassium levels
 - Glucose levels
 - Oxygen levels
- **THERAPEUTIC**
 - Temperature
 - Blood gas analysis

PRODUCTS

- **Non-Invasive**
 - **Continuous**
 - **Easy**
 - **Simple**
 - **Quick**
 - **Real-Time**

NEW STANDARDS

- **NEMCO®**
 - Non-Invasive Continuous Cardiac Output Monitor
 - The ideal complement to conventional vital sign monitors

EASY TO USE

- **CardioScreen 2000®**
 - Brings ICG technology to your patient
 - Easy to use
 - USB port for data export, software updates and external printer connection
 - PC software for offline data analysis and data export (e.g., Excel)
 - Additional modules: NiBP · SpO2 · PWV (aortic Pulse Wave Velocity)
 - f-e-CT and other monitors for vascular diagnosis possible

- **CardioScreen 1000®**
 - The optimal configuration for cardiovascular diagnoses
 - Display of user selectable waveforms and parameters
 - Different screens for optimal data presentation and different clinical settings
 - Interface to patient monitors, such as Philips / HP
 - Connects to Philips / HP monitoring systems by supporting the VueLink protocol.

FLEXIBLE

- Combination of femtoscopic parameters (OCD and vascular stiffness) for vascular diagnosis

INNOVATIVE

- Evaluation of total body monitoring and recording of cardiac output and HR parameters
- Continuous signal quality control and adaptive filter

SCREENSPARAMETERS

- 5 selectable parameters
 - Waveform differentiation
 - Blood pressure
 - Pulse rate
 - Respiratory rate
 - Display of user selectable waveforms and parameters
 - Different screens for optimal data presentation and different clinical settings
 - Interface to patient monitors, such as Philips / HP
- 4 selectable parameters
 - Waveform differentiation
 - Blood pressure
 - Pulse rate
 - Respiratory rate
 - Display of user selectable waveforms and parameters
 - Different screens for optimal data presentation and different clinical settings
 - Interface to patient monitors, such as Philips / HP

FLUID MANAGEMENT

- Fluid balance
- Sodium levels
- Potassium levels
- Glucose levels
- Oxygen levels

THERAPEUTIC

- Temperature
- Blood gas analysis

NEW STANDARDS

- **CARDIOSCREEN 1000®**
 - Non-Invasive Continuous Cardiac Output Monitor
 - The optimal configuration for cardiovascular diagnoses

CARDIOSCREEN 2000®

- Evaluation of total body monitoring and recording of cardiac output and HR parameters
- Continuous signal quality control and adaptive filter

EASY TO USE

- USB port for data export, software updates and external printer connection
- PC software for offline data analysis and data export (e.g., Excel)
- Additional modules: NiBP · SpO2 · PWV (aortic Pulse Wave Velocity)
- Interface to Philips / HP monitoring systems by supporting the VueLink protocol.
- Different device configurations depending on the needs of the customer.
IMMEDIATE CARDIOGRAPHY (ICG)

Changes in volume and blood flow in the aorta cause variations in the thoracic bio-impedance which is measured and displayed on the ICG waveform. This is used to calculate arterial stiffness for cardiovascular risk stratification.

AORTIC PULSE WAVE VELOCITY (PWV/99)

The opening of the aortic valve, when the blood is pumped into the aorta, is defined as the systolic in the ICG signal. On the other leg of the pressure cuff is placed to measure the amount of the Pulse Wave (PW) and to define the Propagation Time (PT). Taking into consideration the distance between aortic valve placed to measure the arrival of the Pulse Wave (PW) and to define its Propagation Time (PT). Taking into consideration the distance between aortic valve opening and the arrival of the Pulse Wave (PW), Aortic Pulse Wave Velocity (PWVao) for which a special ear clip has to be placed.

CONTRACTILITY

H1 Velocity Index Reflects the peak velocity of blood flow in the aorta during systole.
H2 Acceleration Index Reflects the maximum acceleration of blood flow in the aorta during systole.
H3 Weather Index Reflects the contractility indicator.

F1 Thoracic Fluid Content Indicator of chest fluid status.
F2 Thoracic Fluid Content Indicator of chest fluid status.
F3 Stroke Index with each heart beat.
F4 Cardiac Index in one minute.
F5 Blood Flow Index each minute normalised to body size.
F6 Stroke Work the heart must perform to pump blood.
F7 Cardiac Work the heart must perform to pump blood.
F8 Left Stroke Work the heart must perform to pump blood.

FLOW

8 Heartbeat per minute
10 mmHg
2 l/min
60 mmHg{s}
20 mmHg/s
100 ms
0.01

PARAMETERS

FLOW

F8 Heartbeat per minute
F9 Mean Arterial Pressure
F10 Stroke Volume
F11 Cardiac Output
F12 Cardiac Index

CONTRACTILITY

H1 Velocity Index
H2 Acceleration Index
H3 Weather Index
P1 Pre-Ejection Period
P2 End Systolic Pressure
P3 Instantaneous Systolic Pressure
P4 Acceleration Index

F1 Thoracic Fluid Content Indicator of chest fluid status.
F2 Thoracic Fluid Content Indicator of chest fluid status.
F3 Stroke Index with each heart beat.
F4 Cardiac Index in one minute.
F5 Blood Flow Index each minute normalised to body size.
F6 Stroke Work the heart must perform to pump blood.
F7 Cardiac Work the heart must perform to pump blood.
F8 Left Stroke Work the heart must perform to pump blood.

VASCULAR

PVWo Pulse Wave Velocity
WV Systolic Vascular
XV Diastolic Vascular
NYN SVR
NYN SVRI
NYN SVR
NYN SVRI
NYN SVR
NYN SVRI

INNOVATIVE

NCCOMO®

Non-Invasive Continuous Cardiac Output Monitor

CardioScreen 2000®

The optimal configuration for cardiovascular diagnosis

CardioScreen 1000®

Brings ICG technology to your pocket

TOOLBOX

Screen parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Units</th>
<th>Values</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWVao</td>
<td>mm/s</td>
<td><10</td>
<td><15%</td>
</tr>
<tr>
<td>PT</td>
<td>ms</td>
<td><200</td>
<td><25%</td>
</tr>
</tbody>
</table>

NEW SCREENS

- Display of user selectable waveform, parameters, and trends
- Different screen/optional data presentation and different clinical settings
- Interface to patient monitors, such as Philips (iVista™)
- Additional modules: NiBP · SpO2 · PWV (aortic Pulse Wave Velocity)

NEW STANDARDS

- Combination with VasoScreen devices for vascular diagnosis possible
- External computer: Panel PC with touch screen, PC or Notebook
- Display of user selectable waveforms and parameters
- Power supply via USB port
- USB port for data storage, software updates and external printer connection.
- Interface to patient monitors, such as Philips/HP (VueLink)
- Highly sensitive measuring technology and intuitive operation by touch screen.
- USB interface for easy data backup and software updates.
- FLEXIBLE

INNOVATIVE

- Portable, high-resolution technology and intuitive operation by touch screen.
- USB interface for easy data backup, and software updates.
- EASY TO USE

- Continuous \/ Non-invasive monitoring and recording of cardiac output
- Continuous signal quality control and adaptive waveform identification
- Combination of hemodynamic parameters (ICG) and vascular stiffness (PWVao)
- Different screen/optional data presentation and different clinical settings
- Interface to patient monitors, such as Philips/HP (VueLink)

SCREENS

- 2 selectable parameters (force and volume) during systole
- 5 selectable waveforms

PRODUCTS

Non-Invasive \/ Continuous \/ Easy
- Simple \/ Quick \/ Real-Time
TECHNICAL DATA

NICOMO®

- **Measurement Principle:** Impedance Cardiography (ICG)
- **Impedance Channels:**
 - Standard: ICG, ECG, ACM
 - Configurable: ICG, ECG, PWV, ACM

CardioScreen 2000®

- **Measurement Principle:** Impedance Cardiography (ICG)
- **Impedance Channels:**
 - ICG, ECG, ACM

CardioScreen 1000®

- **Measurement Principle:** Impedance Cardiography (ICG)
- **Impedance Channels:** ICG, ECG, ACM

Hypertension Management

- **Physician’s Office**
 - Evaluate heart performance by different function tests (orthostatic test, Valsalva manoeuvre)
 - Define most effective antihypertensive drug combination (Beta-blocker, ACE inhibitor, Diuretic and others)

Emergency Department

- Evaluate and manage the fluid level of a patient
- Establish baseline hemodynamics
- Provide a baseline for objective determination of responses to therapeutic interventions

Pharmacological Clinical Trials

- Evaluate heart performance by different function tests (orthostatic test, Valsalva manoeuvre)
- Define most effective antihypertensive drug combination (Beta-blocker, ACE inhibitor, Diuretic and others)

Optimised for Fluid Management

- Facilitate early decision making in drug development and clinical trials

Applications

- Cardiac Diagnosis
 - Evaluate heart performance by different function tests (orthostatic test, Valsalva manoeuvre)
- Define most effective antihypertensive drug combination (Beta-blocker, ACE inhibitor, Diuretic and others)

- Cardiovascular Diagnosis
 - Measure aortic pulse wave velocity to evaluate arterial stiffness as an independent predictor of cardiovascular risk
- Define most effective antihypertensive drug combination (Beta-blocker, ACE inhibitor, Diuretic and others)

Impedance Cardiography (ICG)

- Provide a baseline for objective determination of responses to therapeutic interventions
- Provides a baseline for objective determination of responses to therapeutic interventions

The New Dimension in Cardiovascular Diagnosis and Monitoring

Medis · Medizinische Messtechnik GmbH

- Werner-von-Siemens-Str. 8 · 98693 Ilmenau · Germany
- Phone: +49 (0)3677 46290 · Fax: +49 (0)3677 462929
- Info@medis-de.com · www.medis-de.com

*5 | Asmar R. Arterial stiffness and pulse wave velocity: Clinical applications. Elsevier, 1999
*4 | The Task Force for the Management of Arterial Hypertension of European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Journal of Hypertension. 2007; 25: 1105-1187

PC Requirements

- **Computer:** Operating system
- **Screen Interface:** USB 2.0

Dimensions

- **Dimensions:**
 - w x h x d: 310 x 240 x 140 mm
 - Approx. 3 kg

Power Supply

- **Power Supply:**
 - 100–200 V AC, 50 / 60 Hz via USB port

Weight

- **Weight:**
 - Approx. 2 kg

IMPEDANCE CARDIOGRAPHY WITH ACM TECHNOLOGY

The New Dimension in Cardiovascular Diagnosis and Monitoring

Optimised for Fluid Management

Dimensions

- **Dimensions:**
 - w x h x d: 310 x 240 x 140 mm
 - Approx. 3 kg

Power Supply

- **Power Supply:**
 - 100–200 V AC, 50 / 60 Hz via USB port

Weight

- **Weight:**
 - Approx. 2 kg

IMPEDANCE CARDIOGRAPHY WITH ACM TECHNOLOGY

The New Dimension in Cardiovascular Diagnosis and Monitoring

Optimised for Fluid Management

Dimensions

- **Dimensions:**
 - w x h x d: 310 x 240 x 140 mm
 - Approx. 3 kg

Power Supply

- **Power Supply:**
 - 100–200 V AC, 50 / 60 Hz via USB port

Weight

- **Weight:**
 - Approx. 2 kg

IMPEDANCE CARDIOGRAPHY WITH ACM TECHNOLOGY

The New Dimension in Cardiovascular Diagnosis and Monitoring

Optimised for Fluid Management

Dimensions

- **Dimensions:**
 - w x h x d: 310 x 240 x 140 mm
 - Approx. 3 kg

Power Supply

- **Power Supply:**
 - 100–200 V AC, 50 / 60 Hz via USB port

Weight

- **Weight:**
 - Approx. 2 kg

IMPEDANCE CARDIOGRAPHY WITH ACM TECHNOLOGY

The New Dimension in Cardiovascular Diagnosis and Monitoring

Optimised for Fluid Management

Dimensions

- **Dimensions:**
 - w x h x d: 310 x 240 x 140 mm
 - Approx. 3 kg

Power Supply

- **Power Supply:**
 - 100–200 V AC, 50 / 60 Hz via USB port

Weight

- **Weight:**
 - Approx. 2 kg

IMPEDANCE CARDIOGRAPHY WITH ACM TECHNOLOGY

The New Dimension in Cardiovascular Diagnosis and Monitoring

Optimised for Fluid Management

Dimensions

- **Dimensions:**
 - w x h x d: 310 x 240 x 140 mm
 - Approx. 3 kg

Power Supply

- **Power Supply:**
 - 100–200 V AC, 50 / 60 Hz via USB port

Weight

- **Weight:**
 - Approx. 2 kg

IMPEDANCE CARDIOGRAPHY WITH ACM TECHNOLOGY

The New Dimension in Cardiovascular Diagnosis and Monitoring

Optimised for Fluid Management

Dimensions

- **Dimensions:**
 - w x h x d: 310 x 240 x 140 mm
 - Approx. 3 kg

Power Supply

- **Power Supply:**
 - 100–200 V AC, 50 / 60 Hz via USB port

Weight

- **Weight:**
 - Approx. 2 kg

IMPEDANCE CARDIOGRAPHY WITH ACM TECHNOLOGY

The New Dimension in Cardiovascular Diagnosis and Monitoring

Optimised for Fluid Management

Dimensions

- **Dimensions:**
 - w x h x d: 310 x 240 x 140 mm
 - Approx. 3 kg

Power Supply

- **Power Supply:**
 - 100–200 V AC, 50 / 60 Hz via USB port

Weight

- **Weight:**
 - Approx. 2 kg

IMPEDANCE CARDIOGRAPHY WITH ACM TECHNOLOGY

The New Dimension in Cardiovascular Diagnosis and Monitoring

Optimised for Fluid Management

Dimensions

- **Dimensions:**
 - w x h x d: 310 x 240 x 140 mm
 - Approx. 3 kg

Power Supply

- **Power Supply:**
 - 100–200 V AC, 50 / 60 Hz via USB port

Weight

- **Weight:**
 - Approx. 2 kg

IMPEDANCE CARDIOGRAPHY WITH ACM TECHNOLOGY

The New Dimension in Cardiovascular Diagnosis and Monitoring

Optimised for Fluid Management

Dimensions

- **Dimensions:**
 - w x h x d: 310 x 240 x 140 mm
 - Approx. 3 kg

Power Supply

- **Power Supply:**
 - 100–200 V AC, 50 / 60 Hz via USB port

Weight

- **Weight:**
 - Approx. 2 kg

IMPEDANCE CARDIOGRAPHY WITH ACM TECHNOLOGY

The New Dimension in Cardiovascular Diagnosis and Monitoring

Optimised for Fluid Management

Dimensions

- **Dimensions:**
 - w x h x d: 310 x 240 x 140 mm
 - Approx. 3 kg

Power Supply

- **Power Supply:**
 - 100–200 V AC, 50 / 60 Hz via USB port

Weight

- **Weight:**
 - Approx. 2 kg

IMPEDANCE CARDIOGRAPHY WITH ACM TECHNOLOGY

The New Dimension in Cardiovascular Diagnosis and Monitoring

Optimised for Fluid Management

Dimensions

- **Dimensions:**
 - w x h x d: 310 x 240 x 140 mm
 - Approx. 3 kg

Power Supply

- **Power Supply:**
 - 100–200 V AC, 50 / 60 Hz via USB port

Weight

- **Weight:**
 - Approx. 2 kg